A Multithreaded Scheduler
for a High-Spced Spacecraft Simulator

Gene Saghi Microclectronics Rescarch Center
Department of Electrical Engincering
University of Idaho
Moscow, 11 83811-1023

Kirk Reinholtz NASA - Jet Propulsionlaboratory
4800 Oak Grove 1)rive, MS 303/31 0
Pasadena, CA 91109-8099

Paul A . Savory Industrial and Management Systems Engincering
University of Nebraska - Lincoln
175 Nebraskallill
Lincoln, NI 68588-0518

November 1946

Submitled to Softwarc Practice and liaperience

For this rescarchy effort, Dr. Saghi and Dr. Savory were supported through Summer Faculty Fellowships
provided by the A1 nerican Society of ¥ngincering Educators (A SEE) in combination with the National
Acronautic and Space Adininistration (NASA).




Summary

The Cassini spaceeraft will soon journey to Saturnto perform a close-up study of the Satur-
niansystem;itsrings, 1110011s, M8 eto-sphere, and the planet itself. Sequences of commands
wil 1hesent to the spacecraft by ground personnel to control every aspect of the ission. 'To
validate and verify these command sequences, a bit-level, high-speed simulator (11SS) has
beendeveloped.The 11SS is expected torunat seventimesthespeed of the actualhardware
and witl thus artow time to fix problems m the sequen ces before they are uploaded to thie
spaccecraft. <1 maximize performance,the 11SS is implemented with multiple threads and
rut s onamulliprocessor systein. A keycomponentof the 11SS is the scheduler, whichcor -
trols the exccution of the simulator. The general framework of the scheduler call 1he adapted
to solve a wide variety of scheduling Problems. The architecture of thescheduler is presented
first, followed by a discussion of issues related to performance and multiple threads. Second,
the avoidance of deadlocks and race conditions is discussed and a1y informal proof for the
abserce of both in the scheduler is described. Third, a study of various scheduling policics
is provided. Finally, experimental results of the scheduler using from (nit to four threads on

two and four processors is presented.

Key Words - deadlock, inultiprocessing, multithreaded, object-ori ented, scheduli ng policy,

simulation.




1 Introduction

Aninternationalendeavor involving the National Acronautic and Space Agency (NASA), the
Iuropean Space Agency, and the Italian Space Agency is developing the Cassind spacecraflt
to learn more about Saturn’s atmosphere, magnetic field, rings, and mo ons.  Unlike the
Voyagers th at. flew past Saturn on their way out of the solar system,Cassini’s mission is
afour- -y(a’, closc-up study of the Saturtiansystern. Scheduled to launchin October 1997,
the mission represents a rare opp ortunily to gain signifi cant insights into major scientific
questions about the creation of the solar syster |and the (’011(1 tionsthatledto life on Jarthr.
(A detailed deseription of the spacecraft and i s missioncann e found at the NASA Cassini
home page: hitp:/www jplnasa.gov/cassini/)

During Cassini’s mission, scquences of commands will he sent to the spacecraft by ground
cont rolpersonnel . Fach scquence instruction will direct the spacecraft to perform some
operation such as firing a thruster or sending  a controlcommandtoone of the 011- hoard
scientific instruments. To validate and verify thesccommandsequences,a “l)it-level” high-
speed simulator (11SS) has beendeveloped. The 11SS is expected to run at seven times the
speed of the act ual hardware and will thus g]low time to test the sequences and fix p roblems
i nihem before they are uploaded to the spacecraft.

The 11SS provides models of cach of the thirty-one datasystem hardware components
onthe spacecraft. Fxar nples of hardware components include: thel 750a central processing
unit, the intercor nmimuni cation bus, the Reed-Solor non downlink, and thie solid st ate data
recorder. The 11SS is implemented as a “bit-level,” software- only sitnulator derived directly
from the hardware specifications. T'hat is, the thirty-one 11SS modcls are actualy hardware
cimitlators for thie Cassinispacecraft data systems. Because the emulator 1 nodels are bit-level
representations of thic actual hardware, the 1SS directly exceutes thie flight, software that is
1o beloaded 011 the spacecraft.

One of the key control components in the 11SS is the scheduler, whose task is toschedule




the exceution of Models so as Lo minimize €XCCubl o time while keeping the models synchro-
nized with one another. Tomeel its goal of anyexecutionspeed of seven times the actual
hardware, the Cassini 11SS is nplement od with multiple threads that run on multiple pro-
cessors. '1'hus, the scheduler must 1a nage how “threads” exceute cach of the thirty-one
hardware emul ators. Race conditions and deadlock are potential problems with any par-
allel program. The 11SS scheduler has the additional goals of being provably free of race
conditions and dcadlocks.

"Phis paper describes the design and development of a general-pur pose, multithreaded
scheduler that has high performance and is provably free of race conditions and deadlocks.
In addition, the sclection of a scheduling heuristic s described and experimental results
arc provided to illustrate the scalability of thescheduler as thenumber of tili’(zids and
p rocessors is increased.  Although this paper focuses on the Cassimi HSS scheduler, the
framework described here canbe easily applied to many other S(thcduling}’1'(’1—’](‘111s where a
multithreaded approach is desired.

The remainder of this paper is organized as follows. Scction 2 presents some of the key
issues associated with multithreaded programming. Scction 3 describes the 11SS scheduler’s
object-oriented framework. T'he scheduler algorithm is givenin Section 4. The prevention
of race conditions and dcadlock and the proof of their absence is provided in Section b, 17 ()
cho ose a scheduling policy for the scheduler, a simulation experiment was perforied. The
sim ulation results are presented in Section 6. Section 7 concludes with a discussion of the

experimental performance results achieved with the scheduler.

2 Multithreaded 1 ‘programming Considerations

Before discussing the design of the 11SS scheduler, it is necessary to hriefly discuss the
multithreaded programming paradigin. Readers that are Tam iliar with multithreaded pro-

gramming issucs may wish 1o bypass this scection. Those interested in reading more about




<

multithreaded programming are referred to [4] and [3]. Our discussion on threads is based
on Sun Microsystem’s Solaris 2 threads implementation
A processis defined here as a running program and al of the state nforma jon associated

with it. A {hrcad is an independent stream of control within a process. Iraditional processes

1ave a single arcad of control and posses

sole ownership of the process’s memory and other

1

resource

-

1 a multithreaded environment, a process can have many active threads, with all

threads sharing the process’s memory and resources. On a multiprocessor system, dillerent

threads may exccute on different processors. The  reads execute concurrently, which can
result in a substantial improvement in performance. Better performance often results on
uniprocessors as well by allowing better utilization of the processor. For example, when one

ircad blocks on an /O request, another thread can exccute and the processor vains fully

utilized

A process is made up of several e tweight processes. Bach lLghtweight process (LWP
] 1 £ g gnt j

can be viewed as a virtual processor that is available for code excecution. On a multiprocessor
system, cach WP can exccutle on a diflerent processor concurrently.  WPs are scheduled
onto the available processors according to their scheduling class and oriority. Ivery WP can
iave many threads associated with it, but threads assigned to the same LWP run sequentially
with respect 0 one anotaer. In the general case, the user does not know 1ow threads are
distributed among LWDPs. However, it is possible for the user o create a bound thrcad, which
is a {rcad that is permanently tied to a specific LWDP

As stated carlier, threads share memory and other system resources. This can lead to
race cond tions. Races are events with nondeterministic outcomes in otherwise deterministic

programns. For example, consider two threads, A and I3 with the code segments:

Thread A Thread B

X =x + 1; x =x -1

-




I [the vatue of x is 2 before the code segments excceute, the vatue of x afterward could
be =1, 2, or 3, depending on the order in which the reads and writes associated with the
code segments arc actually performed . This type of nondeterministic hehavior is generally
undesirable.

‘() prevent the above variety of race condition, access to shared data nust be serialized.
In multithreaded programming, this is done through the use of a mutua  exclusionlock, or
ur1(3. The first thread that calls the Tock on a mutex gets ownership of the mutex. It can
then proceed to across theshared data protected by ther nutex. Further calls tolock the
mntex will fail, causing thecalling threadtosleep. Whenthe mutexowner catts unlock, one
of thesleeping till’ CdS will be awakenied and giventhe chancetolockthe mutex, although
another thread could actually obtain ownership of the miutex fivst.

It is important to rcalize that the PTOper yse of mutexes alone does NOt prevent ihe

occurrence of all race conditions. Consider the following example:

Thread A Thread BB
mutex.lock(&m); nutex. lock (&n);

X = x + 1; X = X * 25
mutex. unlock(&m); mutex unlock(&m);

If the value of x is again 2 before the code segments execule, the value of x afterward
could be b or 6 depending on which thread obtained the mutex first.

The amount o f code protected by mutexes in a multithreaded program should be min-
imized, because the use of mutexes significantly reduces the concurrency of the program.
Although the use of mutexes is necessary 1o control access to shared resources, their use can
lead 1o another significant problem called deadlock. Deadlock can occur whenever a circular
chain of threads exists in which cach thread owns onie or more mutexes that are requested by
the next thread in the chain. For example , consider the case where thread A owns mutex m

and is wailing to obtain mutex m2, while thread I3 ow ns mut ex m2 and is waiting to obtain




wmtex i Neither thread can continue. Deadlock also occurs when one thread alrcady

owns a mmutex, but tries to obtain ownership of he mutex again

Among the goals for the HSS scheduler were high Herformance and the absence of race

—_—

conditions and deadlocks. n the following scctions, the way whicl these goals were

achieved 1s discussed.

3 Scheduler Architecture

3.1 Jverview

The 1SS scheduler is implemented in G-+ because of that language’s run ame efliciency
and s support for object-orien ed programming. A simplified representation of the over-
all architecture of the HSS is shown in IMigure 1. The simulation clements, or models, are
connected to cach other via specialized interface objects called splices. tach model splice
is a unidirectional communication channel. Additionally, the scheduler is connected to cach
model by dedicated scheduler splices. There are two user interfaces available i 1SS:
a command-line mterface, and a graphical-user interface. These interfaces are implemented
using an embedded Tel (“tool command anguage”) interpreter, a frecly disti buted inter-
pretive language developed at the University of California at Berkeley [6]. More detail on
the architecture of the HSS can be found o [5]

The remainder of this section discusses he architecture of the HSS scheduler. A graphical
representation of the structure of scheduler is depicted in Figure 2.

3. arricers

T x 155 scheduler framework is based on a barrier mechanism. A barricr s an object used
to synchronize modcls. Iach barrier has an entered set, an entry set, an event set, and an

exiosel The entered set is used to track which models have arrived at the barrier. No model

Lt




TCL interface
e L —— > scheduler splices

“‘mdsj © ————&  model splices
[ scheduler lytstats 1
B S I | simulation framework
mom.m. .mmmm.m ] I\-l--l-Tl--‘illl_"\'wiTmUnmmmm NEREOSRRNRREONNER PRARANNAREANARNRAN e MMM

TTT———

—— I
cpu_a T aacs ]

L - D
primary b@

aacs bus

model instances

Figure 1: Sim plified representation of HSS overall architecture.

inthe barrier entry set may proceed beyond the barrier until all models in the entry set have
arrived at 11he barrier. Once all models in the entry set have reached the barrier, the events
associ ated with thie event set are performed. Ther, the niodels in the barrier exit set are
relea sed (enabl ed for execution).

The only restrictions on model entry and exit sets are as {ollows:

Given barriers bi and b; that oc cur at times bi(t) and bi(1), respectively,

Q)

[ thread j

Mo LYY . a o . . N M
Pigure 2: Graphical representation of scheduler structure.




1. (1) = 0:(1), modal 1y can be a menber of al most on ¢ of the barricr enitry sets and
1 i} s k A

one of the barrier exit sets.

2.1 b;(1) < b;(1), mod ¢l my, can be ill the entry sel for b and b, if and only if it is also

m the exit set for b;.

IMtgure 3 illustrates the use of barriers to synchronize model execution.
bl .

time

“““““““ >
models [ S | - |
et | B I N
e [ e [ S
] el B ol e e

. el ] L r
I i || SR R
I 1] samm - e O
] o | o e - L—————b—
e e R >
\ L L 1

breakpoint
barriers barrier

Iigure 3: Use of barriers to synchromze model execution.

T'he Cassini Spacecraft is a real-time system. Thus, the 11SS must track simulated time.
I"hell barrier storesthe timeat whichit is to occur. Inaddition, cach barrier includes a flag
that indicates the presence of a barrier breakpoint (discussed further in Section 4) .

Barriers can be made periodic. Facli barrier has three paraineters to control the barrier’s
periodicity. The phase describes the of1'set of the barrier’s first occurrence from time zero.
The cycles and nanoseconds paramcters describe the period of the barrierin cycles per
number of nanoscconds. In the Cassini spacecraft, there are two reference clocks {hatl arce
availabletoall of the syst eimmodules. These clocks arc used by the modules for the purpose
of synchronization. In the Cassini HSS, the same function is accomplish ed with two periodic

bharriers.




3.3 Models ant] the Model Qucuc

As d iscussed carlier, every hardware entity to be emulated in the spacecraft hasan associated
1)() (101 object. THese models e nulate the hardware inresponsctotheflight software and
other models. In the scheduler, a model object stores the identity o £ the next barrier at
which it must stop, the time of thal barrier, a list o f barrier stop times for every known
barrier the model will encounter in the future, the current time for the model in ¢ ycles, the
modelstate,andthecyclerate for the model expressed ill cycles D1 number of nanoscconds.
Models canmot be stopped in the middle of an instruction exccution and some models have
variable lenigth instructions. The cycle rate information and the instruction to be executed
dctermine the points intime at which a modcl canbe stopped. Thus, the concept of abarrier
isrclaxedsuch that a nmiodel that reaches a barrier witl actually stop at or after abarricr (if
aninstructionis not yet ¢ ornplete when the barrier occurs).

A niodel canbe “waiting” for a thread on whiich to run, “running” on a thread, “at_barricr”,
or “susp” (suspended). A model that encounters a breakpoint b ccomes suspended. 'I'he user
can thien interrogate the modelto determine its state in formation. Inaddition, the scheduler
will stop executing all other nodels. The user can then interrogate the simulation mod-
cls for troubleshooting purposes. Although exccution is suspended by thie scheduler when
anymodelhitsa b reakpoint, the models are not gua ra nt ced to be completely synchronized.
I owever, barriers can be used to set bounds 011 the degree to which models may be out o f
synchronization.

The model queue holds models waiting to be excecuted. Models are put on the model
qucuc only when a barrier has beenrea ched. The mod els place 011 the mod el queue are the
modecls specified as thie exit, sct for the barrier. The model queue is currently implemenited
asafirst-in, first-out queue. The scheduling policy used by the scheduler determines (e
order in which models are placed 011 the queue. Section 6 provides a detailed deseription o f

scheduling policy and its effect on the performance of the scheduler.



3.4 Tasks, Threads, anti the ‘J’bread Quecuc

Because the scheduler’s goal is to minimize runtime by maximizing parvallelisin, thescheduler
uses b ound threads 1o ¢ xecute models. This at1ows cachscheduler thread to be scheduled
globally by the operating system and resullsin good” perforimance when the number of
IWDPs is cqual to or slightly greater th an the number o £ processors in the system. For
single- processor systems, it is generally better to use u nhound threads in order to reduce the
ope rating system overhead.

Iivery scheduler thread has an associated task object. A task can be inone of the
following states: idle, running,dying. Whena task has a model to run, it is in the running
state. When a thread is marked for deletion, the associated task is put inthe dying state.
Otherwise, the task is inthe idle state. livery task also stores the mumber of a model to run
and the time of thie next barrier at which the modelmust stop (bot h valid only when the
task is inthe runming state). Thelask also stores its uniqueidentity number.

Iovery task has a mutex associated withit. This mutex is used to implement a sleep-
wail barrier for the task. When a task (thread) is created, its mutex is locked. The thread
then executes the code shown below for a sleep- wait barrier. Whenit tries to re- acquire t}ie
mutex, it is put to sleep. When the user is ready to advance the sim ulation, a runcommand
is issued tothescheduler, which causes thie task mutex to bhe relcased. Now the thread will
acquire thie mutex and then proceed do useful work. Once the thread has done al the wor k
it can, it returns, goes to the top of the loop, and tries to re-acquire the mutex. Qnee again,

it will he put 1o sleep until another user run comm and is issued,



Sleep-Wait, Barrier Spin-Wail Barrier

while( !'done) { while ('done) {
task.lock() ; while (task .cond == 0) {};
if (task .state == dying) if (task .state == dying)
done = 1; done = 1;
el se el se {
do.work() : do.work();
}s task.cond= O;

}
¥

Aviother possible approach is the spin-wait barrier (shown above). With this approach,
the task condition would be initiall y set to 0. The thread would stay in the inner-most while
loop until the user run command changed the task condition to some other value. Then
the till’cad (o1111 go ontodouseful work. Once finished, the task would once again enter
the spin-wait barrier. The diflerence between these two approaches is that a sleeping thread
dots not comipete for execution time on a processor. This is not an issuce if every thread in
the 11SS has its own processor. However, whenthereare 1)101(C threads than 1)1 (0" (%9))1's, the
sl(w])-wait barricr has been found to be a far superior app roach interms of performance.

The thread queue holds the taskidentity numbers for threads that are curren tly sleeping
al the sleep- wail barrier. During initialization of the scheduler, all created tasksare placed
011 thethread queue. When a thread is needed, a taskidentity number is removed fromthe
thread queue and the corresponding task mutex is released. When a titrca(l has 110 work
left it puts its task identity number back onthe threadqueuchelore entering the sleep- wait

barricr.

4 Scheduler Algorithm

This section describes some of the details of the Cassini HSS scheduler implementation.

1 ’articular attention is focused on micasures taken to i mprove performance and to prevent




deadlock andrace conditions. The paragraphs that follow refer to the simplified pscudo code

providedin IMigures 4 7.

threadloop(task){
done = Q
while ('done){
task.lock() ;
if (task .state == dying)

done = 1;
el se
do_work(task) ;
3,
}s

Figure 4: Simplified pscudo code for the threadloop () function.

nmodel _onto_thread ()
while ((task = get_thread_from queueo) != NONE{
while ((model = get_model_from_queue()) != NONE){
task.model = nodel ;
task.unlock() ;
br eak;

Figure 5: Simplified pscudocode for the model _onto_thread() function.

In  the Cassini spacecraft, the hardware components synchronize with once anothier every
onc-cighthsccond,ata real-timeinterrupt (11°]7]). The 11SS mimies thisbehavior throughthe
uscof aperiodicbarrier with the period set Lo onc-cighth sccond. Otlier barriers are added
as needed to provide additional synchronization points among modecls. The user can specily
totheschedulerthelengthof emulated timeorthenumberof 1{" I11's thattheschedulershould
exceute. HI response, the scheduler sets up a special barrier, knownas a breakpoint Harrier,

that has the desired stop time and that has its stop flag sct.

11



do_work(task){
breakpoi nt = NO
while((suspended == NO) & (breakpoint == N0O)){
rv = run_model (task .model );
nodel .state = waiting;
switch(rv){
case MODEL_NOT_FINISHED:
model .state = running;
br eak;
case MODEL_REACHED_BARRIER:
nodel state = at_barrier;
breakpoi nt = model_hit_barrier(model );
br eak;
case SCHEDULER_SUSPENDED:
suspended = YES;
model .state = suspended;
br eak;
case default:
ERROR() ;
br eak;
}_;
ht

T (node] .state != running){

if ((breakpoint == NO & (suspended == NO)) A
model. = get_model();
nodel state = running;
if (nodel == NONE)
br eak; Il The nodel . queue is enpty.

b
b
put_task_onto_thread_queue() ;
b

IYigure 6: Simplified p seudo code for the de.work() function



nodel _hit_barrier (model){
breakpoi nt = NG,
barrier = nodel .barrier;
barrier. insert_into_entered_set (nodel);
if (barrier. entered.set == barrier. entry_set){
breakpoint = barrier .breakpoint;
barrier. clear_entered_set ();
barrier.do_events(barri er);
barrier .set_next_stop_time(barrier) ;
for (nodels in barrier. entry_set){
nodel .barrier = find_next_barrier_for_model (nodel);
model .stoptime = nodel .barrier->stoptime;
+;
if (breakpoint == YES)
br eak;
el se {
put_models_onto_queue(barri er.exit_set);
nodel _onto_thread() ;
};
5
return breakpoint;

b

Iigure 7: Simplified pscudo code for the model _hit _barrier() function.

13




When the scheduler is initiated, a user-specified number of threads is created. The
corresponding task identifiers are loaded into the thread queue. The task mutexes are locked
and cach thrcad then begins to exccute the spin-sleep barrier code in the threadloop()
fanction (Figure 4). 1ach thread will atlempt to lock its task mutex again and will thus
sleep on the call to lock (). This method of rendezvous incurs overhead costs on e order
ol microseconds on a Sun SPARCstation 10. As mentioned in Section 3. there are other
methods to cause the scheduler threads to wait for work, such as spin-wait barriers and
condition variables.  Jowever, we found that other system- rovided nethods of rendezvous

result in greater overhead costs (often much greater)

As the result of a user “run” command, issucd  hrough a I'cl mmterface, the scheduler
creates a breakpoint barrier and hen loads al of the models (al active models must belong,
to the entry set and exit set of the breakpoint barrier) onto the model queu. Iinally, the
user interface thread calls model onto.thread () (Figure 5). This function obtains a thread
from the thread quene and then a model from the model quene. Next, the model is assigned
to the read and the task mutex is unlocked. That thread can now move beyond the spin-
sleep barrier in the threadloop() function. T'he ‘I'cl interface thread wil continue {o Hair
threads with models in this fashion until the thread queue is empty. A that time he el
imterface thread wil return and the scheduler threads will continue executing on their own.

n threadloop(), a thread that obtains ils mutex proceeds to call do.work() (I'igure
G). When the thread returns from do_work (), it will again try to obtain its nutex and wi

thus spin-sleep at that point. An outside event, such as a user command, must unlock the

=

task mutex to allow the thread to continue.
ndo.work(), a thread will run the model it was assigned in model _onto_thread(). One
of three results can occur: 1) the model may not complete all of s assigned cycles (i.c., the

model does not hit a barrier), 2) the model executes enough eyeles to hit a barricer, or 3) the

model hits a breakpoint (a model breakpoint set by a user for troubleshooting purposes).



In the fivst case, the model is left on the thread and will be run again. In the sccond ca

model hit.barrier() is called. In the third casce, the scheduler sets a global suspended flag
and the modedl state is sct to “suspended”
I model hit barrier() (I'igurc 7), the model is added to the entered set for the barrier.
Il some models i1 the entry set have 1ot yet been added to the entered sct, the Tunction
returns. Otherwise, if al of the models in the entry set have arrived at the barrier, the
barrier entered set is cleared, the events associated with 1 1at barrier arc performed, and e
next stop time for the barrier is established. [ the barrier has its stopped flag set, no models
arc loaded onto the model queue. O herwise, the models in the exit set for the barrier are
al loaded onto the model queue and mionto_thr is called to start up the other threads.
Secause the model queue and the thread queue are hoth aceessed by multiple threads,
cach must be protected by a mutex. When accessing cither queue, a thread first obtains
e correct mutex, then pushes or pops an clement from e queue, and then nnmediately

1 best code performance is achieved Hy keeping

releases the mutex. When using mutexe

those mutexes locked for as short a time as possible. As wil be shown in 1 next scction,
the fact that a thread will not own more than one mutex at a time when accessing the model
and thread queues means that no deadlock can occur

Tach barrier object is also protected by a mutex unique to itself. The barrier mutex
guaranices that only one thread can access the barrier object at a time. Thus. onlv one

thread can find that its model was the last to enter a barrier. The other threads return from

model.hit barrier() knowing that the barrier has not vel been hit. Fach of these threads

altempts to obtain another model from the model queue. 1f successfu , cach thread will 1 1en
execute that model and the process will continue. However, if the model queue is empty,
the thread will put its identifier on the thread qucuc and return from do.work() only to

perform a sleep-wait in threadloop(). The thread that had the model that was last 1o hit

he barrier, the master thread, is thus responsible for loading the model queue and starting




theotherthreadsup by calling nmodel -onto-thread (). After doing so, the master thread
will returnto do. work(), where it willattemptioobtainamodelto execute.

When the master thread enicounters a barrier that has its breakpoint set, it will put its
identifier on the thread queue and will signal the I'cl interface thread that thescheduleris
fimshed. Themaster thread will then return from do. work() and end up at the sj)jll-sic(l)
barrier in thread] oopo. Thus, all of the scheduler threads are back 1o the same statethey

were inpriorto the launch of the scheduler.,

5 Deadlocks and Race Conditions

5.1 Deadlocks

One important yequirement for the scheduler is that it iust be free of deadlocks. There
arcthree classical approaches to deadlocks inthe literature: deadlock prevention , deadlock
avoidance,anddcadlockdetectionand recovery [2]. 1 )( YI(I1o(A avoidance and deadlock de-
{ection and recovery sch emes involve runtime overheadto detect and avoid unsafle states
ortodetect when deadlock has occurred. 1 )cadlock prevention, on the other hand, can be
naplemented without runtime overhicad. Thus, inthe interest of maximizing performance,
deadlock prevention was chosen as the approach to deadlock for the Cassini HSS scheduler.

Cofliman, Elphick, and Shoshani []] stated the following four necessary  conditionsthat

must beineflect for deadlock to exist:
1. Processes claim exclusive control of the resources they require,

2. Processes hold resources alrcady allocated to ther 1 1 while wai ting for additional re-
»/ g)

sources.

3. Resources cannot be removed from the p rocesses holdi ng them until the resources arce

uscd Lo completion.

1]




4. A circular chain of processes exists in which cach process holds one or more resource

that are requested by the next process in he chain,

Jecause all four of the above conditions are necessary for deadlock to occur, the absence of
any onc or more of the condi jons eliminates the possibility of deadlock. T e first condition
cannol be avoided when multiple processors cooperate to solve a problem and they must

share one or more resource

Jeadlock prevention scecks to climinate the occurrence of one
or more of conditions (2), (3), or (4). For the scheduler, we chose to concentrate on preventing

condi jon (2) and condition (4).

The shared objects controlled by the scheduler are e model queue, the thread queue,
the barrier objects, the task objects, and the model objects. As discussed above, the model

and thread queucs are cacl protected by unique mutexes. I al of the scheduler code, when

the scheduler obtains either of these mutexes, it accesses the protected data and then releases

the mutex withou attempting to obtain any other mutexes. To help insure this, there are

no function calls performed between the acquire and release of the queue mutexe

In model hit.barrier(), a thrcad must obtain the mutex for the barrier hat the exe
cuted model hit, prior to adding the model 1o the entered set. The barrier nutex is released
hefore the function returns. Only two functions called from within t modcl_onto_thread ) at

tempt 1o obtain mutexc

These are put.models_onto.queue(), and model onto thread().

Joth of these functions must obtain the model queue nutex. Thus condition (2) is met.
lowever, because he model queue nutex is obtained and released without attempting to
acquire other mutexes, there can be no circular chain of requests for mutexes, and condition
(1) is denied.

Task objects are not actually protected by mutexes. There is a one .o-one correspon

dence hetween a task and a thread, only the thread corresponding to a Lask object ever

manipulatc

that task’s data. Thus, no rcal sharing of data takes place. The task mutex

is instead used to put the thread to sleep and to wake it up later (as presented in Scetion




3 and 4). When all of the scheduler t hreads go Lo sleep, the scheduler can in fact make no
progress without outside interven tion. 1lowever, auser fill’(fa(l can 1111100 *1f thetaskmutexes
to start scheduler operation . Outside threadsnever 1ock task mutexes, with the exception
of sched ulerinitiation, where cach task mutexislocked only wh enthe corresponding thread
is created.

M odecl objects are not protected by mutexes even though they are shared objects. Thus,
deadlock is not possible with regard to contention formodelobjects ainong threads. Instead,

race conditions are the concern with models and are discussed in the next subscction.

5.2Race Conditions

I'rom the discussion above, it should be clear that w i t b the exception of modcel objects,
a1l shared data arc protected by mutexes. In the case of models,thebarriermechanism
combined with the existence and use of the model queue gua rantees that 1) two threads
will try to access a nmiodel object at the sarne time. T'he restrictions 011 barriers presented
i Section 3 insure that only one barrier can st and in the way of a niodel at any one time.
I'urther, a modelis placed 011 the model queuc only when a barrier has been reached and
only one till’ca(l will ever “reach”a barrier becausconly onethreadcanownthe last 11)0(1 (71
to enter @ barrier. This implementation of barriers combined with the use of a model quene
that is protected by a mutex, guarantees that a model canonly be assigned to one till'ca(l
al any poinit in time. Thus, there is never any contention between threads for a particular
11)() (1( 1 object.

Recall that in Section 3, it was shown that race condition s can occu r even with the proper
use of mutexes. This is possible when two threads write different values to a shared variable
and the ultimate result depends 011 the order in which the threads obtain access to that
shared variable. i the case of the scheduler, we can show that this will ncever occur.

Consider the model queune. Model identitics are put onto the model queue ¢ her by a user

18



Tl th -cad or by a scheduler thread when a barrier has been reached. In the frst case, the

heduler does not accept run commands from a user thread unti the scheduler has finished

wil e previous run command (a simple handshake scheme assures this). In the latter case,
recal thal only one thread can have the model  at is last to reach a barrier. The other

th cads arrive carlier and, upon finding that the model queue i

cipty, putl themselves o

sleep. Thus, regardless of which  iread loads the model queue, he nodel queue always end
ap with the same models on it (those models in the exit set of the last barrier encountered)

n regard 1o the thread queue, he onc-to one correspondence hetween a thread and a
task object insures that a thread can only write its corresponding task identifier to 1e hread
quecue. Jurther, it doces not overwrite other .ask identifiers alrcady on the queue.  3ecause
every thread is created equal in the eyes of the scheduler, the order that task identifiers

appear on the read queuce makes no diflerence.

Once a barrier object is created, only two data items associated with the object are
updated. These are the time at which the barrier is to oceur and the entered set for the
varrier. Regardless of which thread reaches the barrier, the time for the next occurrence of
the barrier will He updated n exactly he same way. As for the entered set, it is represented
as a bit vector, so cach model that reaches a barrier results in changing e state of one
unique bit i the vector. Thus, no race condition can occur,

To summarize this section, we have shown hat the 11SS scheduler is free fron deadlocks
and race conditions. While the approach used depends on the particular algor thim and data
structures involved, the techniques used aere can be readily applied o other software design

cllorts

6 Scheduling Policy

To empirically explore the impact of various scheduling policies for the scheduler, we de-

veloped a discrete-event simulation model using the SIMAN simulation language [7]. The



model was developedtiomimicthe operation of thescheduler. The key performanice variable
wc micasu red wasthetotalestimatedtimeforthe 11SS to exccute all thirty-one models for
too 1i'l'ls.

Oncethe simulation model was verified andvalidated, wedeveloped fifty-six variations of
it. lach di flered by the nwimber of threads avail able to process models (1 thread, 2 threads,
3 threads, 4 threads, 8 threads, 12 threads, and 16 threads) and the queue priority rule for
the1)10(2 (1 queue. By running forty replications of cach simulation model, we performed a
total of 2240 simulation runs. IFor these simulation runs, it was assumed that every thread
was bound to a unique processor.

Table 1 suimiarizes the experimental design used for our study. The data in the table
is the estimat ed average time for the 118S torunallof the thirty-onchardware models for
the varyi ng scenarios. For example, our sir nulation nhodel estimates that with (e threads
and Rule 4, the 11SS will have anexceution time of 38.8 secconds. That is, it is estimated
that it will takethe 11SS 38.8 scconds to simulate 12.5 scconds (100 RT'1x 1/8 sccond per
R'I'Y) of the Spat.ccraft, datacontrolsystem . These results indicate that the 11SS is slower
than real-til]lc,However,since thetime that these execution-timemeasurements were made,
significant nnprovements have been made to the hardware model prograr 1 codes. Currently,
the 11SS is faster thanrcaltime.

Ananalysis of variance was performed to test, whether there is a s atisti cal diflerence
amongthemean times to completion. Tor one thread, there is no diflercnice. lor two and
morcthreads, the best performing ruleis Rule 4. A close sccond is Rule7, fol l owed by Ru le
5. Theresulls also indicate that as the numinber of threads incrcase, the run time decreases.
Though there is alimit 011 the improvement. Qur study showsthat after four threads, adding
more threads has minimal impact.

The fact that Rule 4 had the best performance indicates that models that required

the longest excecution times in the past are likely to require the longest execution times in

20



Table 1 Average runtime estimates for the 11SS 1o exccute all thirty-one emulators for 100
1{ '1'1s. Theresults areindexed by the queue priority rule f-or the inodel quene and the 11111111)['1
of threads o p rocess models.

1 ule
1

2

6

Descriptlion
Iirst-in, first- out - priority given to
model arriving al model queue first
1 .ast-in, first-out - priority givento
modecl arriving al model queue last
Priority given to model that has been
in process {or the least time
Priority given to model that Jlas been
in process for themosttime
Priority giventio model hiavi ng waited
lcast total time inodel queue
Priority given to model having waited
?//10.$1 totaltimcinmodel queue
Priority given to model having waited
lcast total time in thread queue
Priority given to modelhaving waited
most total time in thread queuc

21

1

76.4

76.4

76.5

76.4

16.4

76.4

76.4

76.4

Number of Threads
| 2 | 3 | 4| 8 |12

42.1

39.4

42.1

38.8

41.3

41.3

40.4

421

38.2
33.3
38.2
32.8

37.9

33.2

38.2

23.5
22.9
23.5
22.9
23.1
23.3
22.9

23.5

23.0
22.9
23.0
22.9
23.0
23.0
22.9

23.0

22.9
22.9
22.9
22.9
22.9
22.9
22.9

22.9

16
22.9
22.9
22:9
2.9
22.9
22.9
22.9

22.9




Table 2: Speedup performance of the 11ss as thenumberof til’(m(is used is variedon a
twoprocessor S1 ‘A RCstation10 anda four-processor S1 ‘A RCstation 10.

Number of Threads
Workstation Used 1 ] 2 5 .

Two-Processor SPARCstation 1 () | 1.00 | 1.80 | 1.86 | 1.88
[]“()m‘»]’1'0(1(:8301'S]’A]{(lstat,i(m 10 | 1.00 | 1.90 | 1.93 | 191

the future. This rute is relatively easy to implement. Cumulative execution time data is
maintained for cach model. Models are placed onto the model queue in order from highest

cumulative execution timeto lowest.

7 Performance

The multithreaded 11SS complete with the scheduler deseribed in this paper has been in use
al.the N A SA Jet Propulsion laboratory forseveralmonths. The performance measureinents
deseribed below are measures of the 11SS running actualflight software code. The same scp-
ment of that code was exccuted ill cach Case. T'wo workstation platforms were used. Thefivst
was a SPARCstation 10 configured with two processors and the sccond was a SPARCsta-
tion 10 configured with four processors. The flight software code was not resident oneither
machine, but was accessed through an Ethernet network. The heavy use of the computer
nelwork made dedicated access impractical. However, the experiments were repeated several
times to establish typical performance numbers.

Table 2 shows thespeedup achicved with the multithreaded 11SS onthe two and four
processor SUA RCstation 10 workstations. Speedup is defined here as the ratio of the ex-
ccution time whenusing a single thread over the execution time when using the specified
nu nber of threads. The number of threads used by the 11SS scheduler is a variable set in
theuser ‘I'd interface.

As cxpected, the performance results clearly show that performance is greatly improved

22




when going fromone thread to two . However, little tono gainis made by going from
two threads 1o three thireads, even when four processors are available. This result was not
unexpected, because WC had already collected performance data on execution times for cach
of the {hirty-onchardwarcmodels. ‘Jlist perforimance data clearly showedthat the two
processor imodels account for approximately 98% of the overall exccution time. Using more
than two threads and more than two processors can only resull in speedup on the remaining,
2% of the execution {ime.

Several of the thirty-one models are not fully implernented at this time. T'wo of these
models are expected to require significant amounts of exccution time. When these odels

arc implemented, using four processors should result in additional speedup,

8 Summary and Conclusions

Ihis paper described the design and development of a general-pur-pose multithreaded sched-
ulerthat is free of deadlocks and race conditions. The techniques for avoiding deadlock and
races presented here can be appliedto other multithreaded program design efforts.

It was scenthatthe performance of the Cassini HSS is greatly improved by a multi-
threadedimplementation. Using two threads results inasp cedup of’ 1.9011 a four- processor
workstation. However, using additional threads results in little additional speedup. This is
hecause thetwo processor models account for nearly al of the 11SS exccutiontime. As other
mod cls become fully implamented, we expected see additional app reciable gpeedup forup to
four threads.

Although the current Cassinisiimulator execution time is less than the real-iilllc execution
on the spacecrafl, we are continuing to make improvements. Work i s currently underway
to significantly reduce the processor  model execution tine through optimization of the co de
and through the application Of blockoptimization of the flight software. It is expected that

these optimizations will bring the Cassini 11SS performance to as much asseventimes faster

23




than real time.
Acknowledgments: The authors gratefully acknowledge Jefl Nesheiwat and the entire 11 SS

tcamal NASA.

24




References

[

[5]

[(]
[7]

L. G.Coflinan,Jr., M. J. Elphick, and A, Shoshani, “Syster 1 deadlocks,” Compuling
Surveys, Vol. 3, No. 2, Jun. 1971, pp. 67-78.

11. M. 1)ecitel, Operating Systems, 2nd cdition, Addison-Wesley, Reading, MA,1990.

S. Kleiman, 1). Shah, and B. Smaalders, Programn vng with Thrcads, SuniSoft. 1 °ress,
Mountain View, CA, 1996.

B. Lewis and 1). J. Berg, Thrcads Primer: A Guide to Mullithrca ded Program ming,
SunSoft Press, Mountain View, CA, 1996.

A. Morrissett, K. Reinholtz, J. Zipse, and G.Crichton, “Multimission high speed
spacccraft simulation for the Galilco and Cassini missions,” 1993, pp. XX XX.

J. K. Osterhout, An Introductionto T'cl and Tk, A(l(lisoll-Wesley, Reading, M A, 1993.

C. 1). Pegden, R. 1. Shanmon, and R. 1'. Sadowski, Iniroduction to Stmula tion Using

SIMAN, McGraw 11 ill, New York, NY, 1995.

25



